Saturday, 5 August 2017

1 4 simple moving averages


Moving averages Moving averages Dengan dataset konvensional, nilai rata-rata seringkali merupakan yang pertama, dan salah satu statistik ringkasan yang paling berguna untuk dihitung. Bila data dalam bentuk deret waktu, mean seri adalah ukuran yang berguna, namun tidak mencerminkan sifat dinamis data. Nilai rata-rata yang dihitung selama periode korsleting, baik sebelum periode sekarang atau berpusat pada periode berjalan, seringkali lebih bermanfaat. Karena nilai rata-rata seperti itu akan bervariasi, atau bergerak, karena periode saat ini bergerak dari waktu t 2, t 3. dll, mereka dikenal sebagai moving averages (Mas). Rata-rata pergerakan sederhana adalah (biasanya) nilai rata-rata k yang tidak tertimbang sebelumnya. Rata-rata pergerakan tertimbang secara eksponensial pada dasarnya sama dengan rata-rata pergerakan sederhana, namun dengan kontribusi rata-rata tertimbang menurut jaraknya terhadap waktu saat ini. Karena tidak ada satu, tapi keseluruhan rangkaian rata-rata bergerak untuk rangkaian tertentu, himpunan Mas dapat digambarkan sendiri pada grafik, dianalisis sebagai seri, dan digunakan dalam pemodelan dan peramalan. Berbagai model dapat dibangun menggunakan moving averages, dan ini dikenal dengan model MA. Jika model seperti itu digabungkan dengan model autoregresif (AR), model komposit yang dihasilkan dikenal sebagai model ARMA atau ARIMA (yang saya terintegrasi). Rata-rata bergerak sederhana Karena deret waktu dapat dianggap sebagai himpunan nilai,, 1,2,3,4, n rata-rata nilai-nilai ini dapat dihitung. Jika kita berasumsi bahwa n cukup besar, dan kita memilih bilangan bulat k yang jauh lebih kecil dari n. Kita dapat menghitung satu set rata-rata blok, atau rata-rata bergerak sederhana (urutan k): Setiap ukuran mewakili rata-rata nilai data selama interval observasi k. Perhatikan bahwa MA yang pertama mungkin order k gt0 adalah bahwa untuk t k. Secara umum, kita dapat menurunkan subskrip ekstra dalam ungkapan di atas dan menulis: Ini menyatakan bahwa perkiraan mean pada waktu t adalah rata-rata sederhana dari nilai yang teramati pada waktu t dan langkah waktu k -1 sebelumnya. Jika bobot diterapkan yang mengurangi kontribusi pengamatan yang jauh melampaui waktu, rata-rata bergerak dikatakan merapikan secara eksponensial. Moving averages sering digunakan sebagai bentuk peramalan, dimana nilai estimasi untuk seri pada waktu t 1, S t1. Diambil sebagai MA untuk periode sampai dan termasuk waktu t. misalnya Taksiran hari ini didasarkan pada rata-rata nilai tercatat sebelumnya sampai dengan dan termasuk kemarin (untuk data harian). Simple moving averages dapat dilihat sebagai bentuk smoothing. Pada contoh diilustrasikan di bawah ini, dataset pencemar udara yang ditunjukkan dalam pendahuluan topik ini telah ditambah dengan garis rata-rata bergerak 7-hari (MA), yang ditunjukkan di sini berwarna merah. Seperti yang bisa dilihat, garis MA menghaluskan puncak dan palung data dan bisa sangat membantu dalam mengidentifikasi tren. Rumus perhitungan maju standar berarti bahwa titik data k pertama tidak memiliki nilai MA, namun setelah itu perhitungan berlanjut ke titik data akhir dalam rangkaian. Nilai rata-rata harian PM10, sumber Greenwich: London Air Quality Network, londonair. org. uk Salah satu alasan untuk menghitung rata-rata bergerak sederhana dengan cara yang dijelaskan adalah memungkinkan nilai dihitung untuk semua slot waktu dari waktu hingga saat ini, dan Sebagai pengukuran baru diperoleh untuk waktu t 1, MA untuk waktu t 1 dapat ditambahkan ke himpunan yang sudah dihitung. Ini menyediakan prosedur sederhana untuk dataset dinamis. Namun, ada beberapa masalah dengan pendekatan ini. Adalah wajar untuk mengatakan bahwa nilai rata-rata selama 3 periode terakhir, katakanlah, harus ditempatkan pada waktu t -1, bukan waktu t. Dan untuk MA selama periode genap mungkin sebaiknya ditempatkan di titik tengah antara dua interval waktu. Solusi untuk masalah ini adalah dengan menggunakan perhitungan MA terpusat, di mana MA pada waktu t adalah rata-rata seperangkat nilai simetris di sekitar t. Terlepas dari manfaatnya yang jelas, pendekatan ini umumnya tidak digunakan karena memerlukan data tersedia untuk kejadian di masa depan, yang mungkin tidak demikian. Dalam kasus di mana analisis seluruhnya merupakan rangkaian yang ada, penggunaan Mas terpusat mungkin lebih baik. Rata-rata pergerakan sederhana dapat dianggap sebagai bentuk pemulusan, menghilangkan beberapa komponen frekuensi tinggi dari deret waktu dan menyoroti (namun tidak menghilangkan) tren dengan cara yang mirip dengan pengertian umum penyaringan digital. Memang, moving averages adalah bentuk linear filter. Hal ini dimungkinkan untuk menerapkan perhitungan rata-rata bergerak ke rangkaian yang telah dihaluskan, yaitu merapikan atau menyaring rangkaian yang sudah diperhalus. Misalnya, dengan rata-rata bergerak dari order 2, kita dapat menganggapnya sebagai dihitung dengan menggunakan bobot, jadi MA pada x 2 0,5 x 1 0,5 x 2. Begitu juga MA pada x 3 0,5 x 2 0,5 x 3. Jika kita Oleskan tingkat kedua dari smoothing atau filtering, kita memiliki 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 yaitu penyaringan 2 tahap Proses (atau konvolusi) telah menghasilkan rata-rata pergerakan simetris tertimbang bervariasi, dengan bobot. Beberapa konvolusi dapat menghasilkan rata-rata pergerakan tertimbang yang cukup rumit, beberapa di antaranya telah ditemukan penggunaan khusus di bidang khusus, seperti dalam perhitungan asuransi jiwa. Moving averages dapat digunakan untuk menghilangkan efek periodik jika dihitung dengan panjang periodisitas seperti yang diketahui. Misalnya, dengan variasi musiman data bulanan seringkali dapat dihapus (jika ini adalah tujuannya) dengan menerapkan rata-rata pergerakan 12 jam simetris dengan semua bulan berbobot rata, kecuali yang pertama dan terakhir yang dibobot pada 12. Hal ini karena akan ada Menjadi 13 bulan dalam model simetris (waktu sekarang, t - 6 bulan). Total dibagi dengan 12. Prosedur serupa dapat diadopsi untuk periodisitas yang didefinisikan dengan baik. Rata-rata pergerakan tertimbang secara eksponensial (EWMA) Dengan rumus rata-rata bergerak sederhana: semua pengamatan sama-sama tertimbang. Jika kita menyebut bobot yang sama ini, alpha t. Masing k bobot sama dengan 1 k. Jadi jumlah bobotnya adalah 1, dan rumusnya adalah: Kita telah melihat bahwa beberapa aplikasi dari proses ini menghasilkan bobot yang bervariasi. Dengan rata-rata pergerakan tertimbang secara eksponensial, kontribusi terhadap nilai rata-rata dari pengamatan yang lebih banyak dihapus pada waktunya akan dikurangi, sehingga menekankan kejadian terkini (lokal). Pada dasarnya parameter penghalusan, 0lt alpha lt1, diperkenalkan, dan rumusan direvisi menjadi: Versi simetris dari rumus ini adalah bentuknya: Jika bobot pada model simetris dipilih sebagai persyaratan istilah ekspansi binomial, (1212) 2q. Mereka akan berjumlah 1, dan q menjadi besar, akan mendekati distribusi Normal. Ini adalah bentuk pembobotan kernel, dengan Binomial berperan sebagai fungsi kernel. Konvolusi dua tahap yang dijelaskan pada subbagian sebelumnya adalah pengaturan ini, dengan q 1, menghasilkan bobot. Dalam eksponensial smoothing perlu menggunakan seperangkat bobot yang berjumlah 1 dan yang mengurangi ukuran secara geometris. Bobot yang digunakan biasanya berbentuk: Untuk menunjukkan bahwa bobot ini berjumlah 1, pertimbangkan perluasan 1 sebagai rangkaian. Kita dapat menulis dan memperluas ekspresi dalam tanda kurung dengan menggunakan rumus binomial (1- x) hal. Dimana x (1-) dan p -1, yang memberikan: Ini kemudian memberikan bentuk rata-rata bergerak tertimbang dalam bentuk: Penjumlahan ini dapat ditulis sebagai relasi rekurensi: yang menyederhanakan perhitungan dengan sangat, dan menghindari masalah bahwa rezim pembobotan Harus benar-benar tak terbatas untuk bobot untuk jumlah ke 1 (untuk nilai-nilai kecil alfa. ini biasanya tidak terjadi). Notasi yang digunakan oleh penulis berbeda bervariasi. Beberapa menggunakan huruf S untuk menunjukkan bahwa rumus dasarnya adalah variabel yang merapikan, dan menulis: sedangkan literatur teori kontrol sering menggunakan Z daripada S untuk nilai tertimbang atau tertimbang secara eksponensial (lihat, misalnya, Lucas dan Saccucci, 1990, LUC1 , Dan situs NIST untuk lebih jelasnya dan contoh kerja). Rumus yang dikutip di atas berasal dari karya Roberts (1959, ROB1), namun Hunter (1986, HUN1) menggunakan ekspresi dari bentuk: yang mungkin lebih sesuai untuk digunakan dalam beberapa prosedur pengendalian. Dengan alpha 1, perkiraan rata-rata hanyalah nilai terukurnya (atau nilai dari item data sebelumnya). Dengan 0,5 perkiraan adalah rata-rata bergerak sederhana dari pengukuran arus dan sebelumnya. Dalam peramalan model nilai, S t. Sering digunakan sebagai perkiraan atau perkiraan nilai untuk periode waktu berikutnya, yaitu sebagai perkiraan untuk x pada waktu t 1. Jadi, kita memiliki: Ini menunjukkan bahwa nilai perkiraan pada waktu t 1 adalah kombinasi dari rata-rata bergerak tertimbang eksponensial sebelumnya Ditambah komponen yang merepresentasikan kesalahan prediksi tertimbang, epsilon. Pada waktu t. Dengan asumsi deret waktu diberikan dan perkiraan diperlukan, nilai untuk alpha diperlukan. Hal ini dapat diperkirakan dari data yang ada dengan mengevaluasi jumlah kesalahan prediksi kuadrat yang diperoleh dengan nilai alpha yang bervariasi untuk masing-masing t 2,3. Menetapkan perkiraan pertama menjadi nilai data pertama yang diamati, x 1. Pada aplikasi kontrol, nilai alpha penting dalam penentuan batas atas dan bawah, dan mempengaruhi rata-rata panjang run (ARL) yang diharapkan. Sebelum batas kontrol ini rusak (dengan asumsi bahwa deret waktu mewakili satu set variabel independen acak yang terdistribusi secara acak dengan varians umum). Dalam keadaan ini varians dari statistik kontrol: adalah (Lucas dan Saccucci, 1990): Batas kontrol biasanya ditetapkan sebagai kelipatan tetap dari varians asimtotik ini, mis. - 3 kali standar deviasi. Jika alpha 0,25, misalnya, dan data yang dipantau diasumsikan memiliki distribusi Normal, N (0,1), bila terkendali, batas kontrol akan menjadi - 1.134 dan prosesnya akan mencapai satu atau batas lainnya dalam 500 langkah. rata-rata. Lucas dan Saccucci (1990 LUC1) menurunkan ARL untuk berbagai nilai alfa dan dengan berbagai asumsi menggunakan prosedur Markov Chain. Mereka menabulasikan hasilnya, termasuk menyediakan ARL bila rata-rata proses kontrol telah digeser oleh kelipatan dari standar deviasi. Misalnya, dengan pergeseran 0,5 dengan alpha 0,25 ARL kurang dari 50 langkah waktu. Pendekatan yang dijelaskan di atas dikenal sebagai smoothing eksponensial tunggal. Karena prosedur diterapkan sekali pada deret waktu dan kemudian dianalisis atau dikendalikan dilakukan pada dataset yang dihaluskan. Jika dataset mencakup tren dan atau komponen musiman, smoothing eksponensial dua atau tiga tahap dapat diterapkan sebagai alat untuk menghapus (secara eksplisit memodelkan) efek ini (lihat lebih lanjut, bagian tentang Peramalan di bawah, dan contoh kerja NIST). CHA1 Chatfield C (1975) Analisis Seri Times: Teori dan Praktik. Chapman and Hall, London HUN1 Hunter J S (1986) Rata-rata pergerakan tertimbang secara eksponensial. J dari Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Skema Kontrol Rata-rata Bergerak Rata-rata Tertimbang: Properti dan Perangkat Tambahan. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Uji Chart Kontrol Berdasarkan Rata-rata Bergerak Geometrik. Rata-rata pergerakan (40), (5) Pada kolom kedua tabel ini, rata-rata bergerak dari urutan (5) ditunjukkan, memberikan perkiraan siklus-tren. Nilai pertama di kolom ini adalah rata-rata dari lima pengamatan pertama (1989-1993) nilai kedua pada kolom 5-MA adalah rata-rata nilai 1990-1994 dan seterusnya. Setiap nilai dalam kolom 5-MA adalah rata-rata pengamatan dalam periode lima tahun yang dipusatkan pada tahun yang bersangkutan. Tidak ada nilai untuk dua tahun pertama atau dua tahun terakhir karena kita tidak memiliki dua pengamatan di kedua sisi. Pada rumus di atas, kolom 5-MA berisi nilai-nilai topi dengan k2. Untuk melihat perkiraan perkiraan siklus-tren, kami menyusunnya beserta data asli pada Gambar 6.7. Plot 40 elecsales, kuota penjualan listrik utamaquot, ylab quotGWhquot. Xlab quotYearquot 41 baris 40 ma 40 elecsales, 5 41. col markertquot 41 Perhatikan bagaimana tren (merah) lebih halus daripada data asli dan menangkap pergerakan utama deret waktu tanpa semua fluktuasi minor. Metode rata-rata bergerak tidak memungkinkan estimasi T dimana t mendekati ujung rangkaian maka garis merah tidak meluas ke tepi grafik di kedua sisinya. Nantinya kita akan menggunakan metode estimasi tren-siklus yang lebih canggih yang memungkinkan perkiraan mendekati titik akhir. Urutan rata-rata bergerak menentukan kelancaran perkiraan siklus-tren. Secara umum, tatanan yang lebih besar berarti kurva yang lebih halus. Grafik berikut menunjukkan pengaruh perubahan urutan rata-rata pergerakan data penjualan listrik residensial. Rata-rata bergerak sederhana seperti ini biasanya berupa tatanan ganjil (misalnya 3, 5, 7, dan lain-lain) Ini jadi simetris: dengan rata-rata bergerak orde m2k1, ada k pengamatan sebelumnya, k kemudian observasi dan pengamatan tengah Itu dirata-ratakan. Tapi jika m genap, itu tidak lagi simetris. Moving averages of moving averages Mungkin untuk menerapkan moving average ke moving average. Salah satu alasan untuk melakukan ini adalah dengan membuat simetris rata-rata bergerak rata-rata. Misalnya, kita mungkin mengambil rata-rata bergerak dari pesanan 4, dan kemudian menerapkan rata-rata pergerakan lain dari order 2 ke hasilnya. Pada Tabel 6.2, ini telah dilakukan untuk beberapa tahun pertama data produksi bir triwulan Australia. Bir2 lt - window 40 ausbeer, mulai tahun 1992 41 ma4 lt - ma 40 beer2, pesan 4. pusat FALSE 41 ma2x4 lt - ma 40 beer2, pesan 4. pusat TRUE 41 Notasi 2times4-MA di kolom terakhir berarti 4-MA Diikuti oleh 2-MA. Nilai pada kolom terakhir diperoleh dengan mengambil rata-rata pergerakan order 2 dari nilai pada kolom sebelumnya. Sebagai contoh, dua nilai pertama di kolom 4-MA adalah 451,2 (443410420532) 4 dan 448,8 (410420532433) 4. Nilai pertama di kolom 2times4-MA adalah rata-rata dari dua: 450.0 (451.2448.8) 2. Bila 2-MA mengikuti rata-rata pergerakan bahkan order (seperti 4), itu disebut rata-rata bergerak terpusat dari pesanan 4. Ini karena hasilnya sekarang simetris. Untuk melihat ini masalahnya, kita bisa menulis 2times4-MA sebagai berikut: start hat amp frac Bigfrac (y y y y) frac (y y y y) Big amp frac y frac14y frac14y frac14y frac18y. Akhir Sekarang rata-rata tertimbang pengamatan, tapi simetris. Kombinasi lain dari rata-rata bergerak juga dimungkinkan. Misalnya 3times3-MA sering digunakan, dan terdiri dari rata-rata pergerakan order 3 diikuti oleh rata-rata pergerakan order yang lain 3. Secara umum, order order MA harus diikuti oleh order MA yang rata untuk membuatnya simetris. Demikian pula, pesanan aneh MA harus diikuti oleh MA pesanan yang aneh. Memperkirakan siklus tren dengan data musiman Penggunaan rata-rata moving average yang paling umum adalah memperkirakan siklus tren dari data musiman. Pertimbangkan 2times4-MA: hat frac y frac14y frac14y frac14y frac18y. Bila diterapkan pada data kuartalan, setiap kuartal tahun diberi bobot yang sama dengan syarat pertama dan terakhir berlaku pada kuartal yang sama dalam tahun-tahun berturut-turut. Akibatnya, variasi musiman akan dirata-ratakan dan nilai yang dihasilkan dari topi t akan memiliki sedikit atau tidak ada variasi musiman yang tersisa. Efek serupa akan didapat dengan menggunakan 2times 8-MA atau 2times 12-MA. Secara umum, 2times m-MA setara dengan rata-rata tertimbang bergerak order m1 dengan semua pengamatan mengambil berat 1m kecuali untuk yang pertama dan terakhir yang mengambil bobot 1 (2m). Jadi jika periode musimannya genap dan teratur m, gunakan 2times m-MA untuk memperkirakan trend-cycle. Jika periode musiman itu ganjil dan berurutan m, gunakan m-MA untuk memperkirakan siklus tren. Secara khusus, 2times 12-MA dapat digunakan untuk memperkirakan siklus data bulanan dan 7-MA dapat digunakan untuk memperkirakan siklus-tren data harian. Pilihan lain untuk pesanan MA biasanya akan menghasilkan perkiraan siklus tren yang terkontaminasi oleh musiman dalam data. Contoh 6.2 Manufaktur peralatan listrik Gambar 6.9 menunjukkan 2times12-MA yang diterapkan pada indeks pesanan peralatan listrik. Perhatikan bahwa garis halus tidak menunjukkan musiman hampir sama dengan siklus tren yang ditunjukkan pada Gambar 6.2 yang diperkirakan menggunakan metode yang jauh lebih canggih daripada rata-rata bergerak. Pilihan lain untuk urutan rata-rata bergerak (kecuali 24, 36, dll.) Akan menghasilkan garis halus yang menunjukkan beberapa fluktuasi musiman. Plot 40 elecequip, ylab quotNew orders indexquot. Col quotgrayquot, manufaktur peralatan listrik utama (area Euro) 41 baris 40 ma 40 elecequip, urutan 12 41. col quredquot 41 Rata-rata bergerak tertimbang Kombinasi rata-rata bergerak menghasilkan rata-rata pergerakan tertimbang. Sebagai contoh, 2x4-MA yang dibahas di atas setara dengan bobot 5-MA berbobot dengan bobot yang diberikan oleh frac, frac, frac, frac, frac. Secara umum, m-MA berbobot dapat ditulis sebagai topi t sum k aj y, di mana k (m-1) 2 dan bobotnya diberi titik, titik, ak. Penting agar bobot semuanya menjadi satu dan simetris sehingga aj a. M-MA sederhana adalah kasus khusus dimana semua bobotnya sama dengan 1m. Keuntungan utama dari rata-rata pergerakan tertimbang adalah bahwa mereka menghasilkan perkiraan siklus tren yang lebih halus. Alih-alih pengamatan masuk dan meninggalkan perhitungan dengan berat penuh, bobotnya perlahan meningkat dan kemudian perlahan menurun sehingga menghasilkan kurva yang lebih halus. Beberapa set bobot tertentu banyak digunakan. Beberapa di antaranya diberikan pada Tabel 6.3.1-4 Rata-rata Bergerak Sederhana Bila grafik saham menggambarkan moving averages untuk interval yang berbeda, grafik dengan interval waktu yang lebih pendek dikenal sebagai moving average yang cepat karena perubahan harga penutupan terjadi pada hari - Hari ke hari, rata-rata bergerak cepat akan mencerminkan perubahan tersebut lebih cepat daripada rata-rata bergerak yang lambat Bila grafik saham menggambarkan rata-rata bergerak untuk dua interval yang berbeda, grafik dengan interval waktu yang lebih lama dikenal sebagai moving average yang lambat karena perubahan tutup Harga terjadi pada hari ke hari, rata-rata bergerak cepat akan mencerminkan perubahan tersebut lebih cepat daripada rata-rata bergerak lambat akan

No comments:

Post a Comment